Just a collection of some random cool stuff. PS. Almost 99% of the contents here are not mine and I don't take credit for them, I reference and copy part of the interesting sections.
Thursday, January 8, 2009
Stochastic modelling (aka Monte Carlo) -- Introducing Randomness
http://en.wikipedia.org/wiki/Stochastic_modelling_(insurance)
Stochastic modelling
A stochastic model would be to set up a projection model which looks at a single policy, an entire portfolio or an entire company. But rather than setting investment returns according to their most likely estimate, for example, the model uses random variations to look at what investment conditions might be like.
Based on a set of random outcomes, the experience of the policy/portfolio/company is projected, and the outcome is noted. Then this is done again with a new set of random variables. In fact, this process is repeated thousands of times.
At the end, a distribution of outcomes is available which shows not only what the most likely estimate, but what ranges are reasonable too.
This is useful when a policy or fund provides a guarantee, e.g. a minimum investment return of 5% per annum. A deterministic simulation, with varying scenarios for future investment return, does not provide a good way of estimating the cost of providing this guarantee. This is because it does not allow for the volatility of investment returns in each future time period or the chance that an extreme event in a particular time period leads to an investment return less than the guarantee. Stochastic modelling builds volatility and variability (randomness) into the simulation and therefore provides a better representation of real life from more angles.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment