Thursday, January 8, 2009

Normal Distribution (aka Gaussian distribution)


The normal distribution, also called the Gaussian distribution, is an important family of continuous probability distributions, applicable in many fields. Each member of the family may be defined by two parameters, location and scale: the mean ("average", μ) and variance (standard deviation squared, σ2) respectively. The standard normal distribution is the normal distribution with a mean of zero and a variance of one (the red curves in the plots to the right). Carl Friedrich Gauss became associated with this set of distributions when he analyzed astronomical data using them,[1] and defined the equation of its probability density function. It is often called the bell curve because the graph of its probability density resembles a bell.

The importance of the normal distribution as a model of quantitative phenomena in the natural and behavioral sciences is due in part to the central limit theorem. Many measurements, ranging from psychological[2] to physical phenomena (in particular, thermal noise) can be approximated, to varying degrees, by the normal distribution. While the mechanisms underlying these phenomena are often unknown, the use of the normal model can be theoretically justified by assuming that many small, independent effects are additively contributing to each observation. The normal distribution is also important for its relationship to least-squares estimation, one of the simplest and oldest methods of statistical estimation.

No comments: