Friday, July 8, 2011

Interdisciplinary Research

https://commonfund.nih.gov/interdisciplinary/


The goal of the Common Fund’s Interdisciplinary Research (IR) program is to change academic research culture such that interdisciplinary approaches and team science spanning various biomedical and behavioral specialties are encouraged and rewarded. The program includes the following components:

MOUSE GENETICS LEADS TO NEW CLUES FOR HUMAN PSYCHIATRIC DISORDERS

DNA
Several psychiatric disorders, including attention deficit hyperactivity disorder (ADHD), drug and alcohol addiction, and schizophrenia, are characterized by poor impulse control and difficulty inhibiting certain behaviors. These traits are referred to as behavioral inflexibility, which is thought to be partially under genetic control. However, the genes responsible have been difficult to identify in humans. In a paper available online March 10, 2011 in the journal Biological Psychiatry, researchers in the Common Fund’s Interdisciplinary Research program’s Consortium for Neuropsychiatric Phenomics report that they have identified several genes associated with behavioral inflexibility in mice, and that these findings might be applicable to humans as well. To identify genes that underlie behavioral inflexibility, Dr. David Jentsch and colleagues from the University of California Los Angeles and the University of Tennessee first tested 51 genetically different strains of mice for the ability to reverse their behavior in a learned task. To successfully complete this task, mice had to learn to poke their nose into an opening either on the left or right side of the cage in order to receive a food reward. Once the mice mastered this skill, they had to unlearn which side to poke their nose into, and re-learn to poke their nose on the opposite side. The number of tries it takes a mouse to reverse its behavior indicates how much behavioral flexibility and impulse control the mouse has. The researchers reasoned that by looking at both the genes and behaviors of the mice, they could find genetic differences that were associated with the behavioral differences. Indeed, the researchers zeroed in on a region of the mouse chromosome 10 that contains several genes that influence behavioral flexibility. One gene, Syn3, regulates chemical communication in the brain and has been inconclusively linked to schizophrenia in humans. Another gene, Nt5dc3, is a gene of unknown function that has been associated with ADHD. The current research suggests that both of these genes should be investigated further to discover what role they may play in human psychiatric disorders, and also demonstrates a new way to use mouse behavior and genetics to find genes that may contribute to complex behaviors in humans. 

No comments: