A draft map of the human proteome
- Min-Sik Kim,
- Sneha M. Pinto,
- Derese Getnet,
- Raja Sekhar Nirujogi,
- Srikanth S. Manda,
- Raghothama Chaerkady,
- Anil K. Madugundu,
- Dhanashree S. Kelkar,
- Ruth Isserlin,
- Shobhit Jain,
- Joji K. Thomas,
- Babylakshmi Muthusamy,
- Pamela Leal-Rojas,
- Praveen Kumar,
- Nandini A. Sahasrabuddhe,
- Lavanya Balakrishnan,
- Jayshree Advani,
- Bijesh George,
- Santosh Renuse,
- Lakshmi Dhevi N. Selvan,
- Arun H. Patil,
- Vishalakshi Nanjappa,
- Aneesha Radhakrishnan,
- Samarjeet Prasad,
- Tejaswini Subbannayya
- et al.
- Nature
- 509,
- 575–581
- doi:10.1038/nature13302
- Received
- Accepted
- Published online
Abstract
The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.
No comments:
Post a Comment