http://www.nature.com/news/scientific-method-statistical-errors-1.14700?WT.mc_id=PIN_NatureNews
P values, the 'gold standard' of statistical validity, are not as reliable as many scientists assume.
Statisticians have pointed to a number of measures that might help. To avoid the trap of thinking about results as significant or not significant, for example, Cumming thinks that researchers should always report effect sizes and confidence intervals. These convey what a P value does not: the magnitude and relative importance of an effect.
Many statisticians also advocate replacing the P value with methods that take advantage of Bayes' rule: an eighteenth-century theorem that describes how to think about probability as the plausibility of an outcome, rather than as the potential frequency of that outcome. This entails a certain subjectivity — something that the statistical pioneers were trying to avoid. But the Bayesian framework makes it comparatively easy for observers to incorporate what they know about the world into their conclusions, and to calculate how probabilities change as new evidence arises.
A related idea that is garnering attention is two-stage analysis, or 'preregistered replication', says political scientist and statistician Andrew Gelman of Columbia University in New York City. In this approach, exploratory and confirmatory analyses are approached differently and clearly labelled. Instead of doing four separate small studies and reporting the results in one paper, for instance, researchers would first do two small exploratory studies and gather potentially interesting findings without worrying too much about false alarms. Then, on the basis of these results, the authors would decide exactly how they planned to confirm the findings, and would publicly preregister their intentions in a database such as the Open Science Framework (https://osf.io). They would then conduct the replication studies and publish the results alongside those of the exploratory studies. This approach allows for freedom and flexibility in analyses, says Gelman, while providing enough rigour to reduce the number of false alarms being published.
No comments:
Post a Comment